Contributions to the Formal Verification of Arithmetic Algorithms

Érik Martin-Dorel

PhD advisors: Micaela Mayero & Jean-Michel Muller

2012-09-26

École Normale Supérieure de Lyon, AriC team, Laboratoire de l'Informatique du Parallélisme

Context and Motivations

Context:

- The SLZ algorithm for solving (offline) the Table Maker's Dilemma
- \rightarrow Very long calculations using sophisticated, optimized methods
- \rightarrow Either output some numerical data whose completeness cannot be directly verified, or output a yes/no answer
- \rightarrow These results are crucial to build reliable and efficient floating-point implementations of mathematical functions with correct rounding
- \rightarrow Impact on numerical software, including safety-critical systems

Goal:

- ${\ensuremath{\, \bullet }}$ Guarantee the results that are produced by the SLZ algorithmic chain
- $\rightarrow\,$ Design certificates that fit in with independent verification
- $\rightarrow\,$ Use formal methods: the ${\rm Coq}$ proof assistant

Context and Motivations

Context:

- The SLZ algorithm for solving (offline) the Table Maker's Dilemma
- \rightarrow Very long calculations using sophisticated, optimized methods
- \rightarrow Either output some numerical data whose completeness cannot be directly verified, or output a yes/no answer
- \rightarrow These results are crucial to build reliable and efficient floating-point implementations of mathematical functions with correct rounding
- \rightarrow Impact on numerical software, including safety-critical systems

Goal:

- ${\ensuremath{\, \bullet }}$ Guarantee the results that are produced by the SLZ algorithmic chain
- $\rightarrow\,$ Design certificates that fit in with independent verification
- $\rightarrow\,$ Use formal methods: the $\rm Coq$ proof assistant

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

The COQ proof assistant

We use COQ for

- programming
 - strongly typed functional language
 - computation
- proving
 - use higher order logic
 - build proofs interactively
 - program automatic tactics
 - check proofs

Computing within the COQ proof assistant

 Coq comes with a primitive notion of computation, called reduction.

Three main reduction tactics are available:

1984: compute: reduction machine (inside the kernel)
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

Several levels of trust:

method	trust	speed
compute	+++	+
vm_compute	++	++
<pre>native_compute</pre>	+	+++

Introduction	Rigorous Polynomial Approximation	in	Coq
00000000000	000000000000000000		

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Numbers in Coq

1984:	nat	Peano
1994:	positive, N, Z	radix 2
1999:	R	a classical axiomatization of ${\mathbb R}$
2001:	Float	pair of integers
2008:	bigN, bigZ, big	Q binary tree
2008:	Interval	parametric
2000:	C-CoRN a	n intuitionistic axiomatization of ${\mathbb R}$
2008:	exact transcende	ntal computation exact reals

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Floating-Point (FP) arithmetic

A finite, radix- β , precision-p FP number is a rational number of the form

$$x = M \times \beta^{e-p+1} \quad \text{with} \quad \begin{cases} (M, e) \in \mathbb{Z} \times \mathbb{Z} \\ |M| < \beta^p \\ e_{\min} \leqslant e \leqslant e_{\max} \end{cases}$$
(1)

- the smallest e satisfying (1) is called the exponent of x
- \bullet the corresponding M is called the integral significand of x
- x is said normal if $\beta^{p-1} \leqslant |M|$, otherwise it is subnormal and $e = e_{\min}$

Introduction	Rigorous Polynomial Approximation in COQ
00000000000	000000000000000000000000000000000000000

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Correct rounding

Definition (Rounding mode for a FP format \mathbb{F})

A function $\circ : \mathbb{R} \to \mathbb{F} \cup \{\pm \infty\}$ satisfying

$$\begin{cases} \forall x, y \in \mathbb{R}, \ x \leqslant y \implies \circ(x) \leqslant \circ(y), \\ \forall x \in \mathbb{R}, \ x \in \mathbb{F} \implies \circ(x) = x. \end{cases}$$

Correct rounding

Definition (Rounding mode for a FP format \mathbb{F})

An increasing function $\circ : \mathbb{R} \to \mathbb{F} \cup \{\pm \infty\}$ whose restriction to \mathbb{F} is identity.

Example (Standard rounding modes)

toward $-\infty$: RD(x) is the largest FP number $\leq x$;

toward $+\infty$: $\operatorname{RU}(x)$ is the smallest FP number $\ge x$;

toward zero: RZ(x) is equal to RD(x) if $x \ge 0$, and to RU(x) if $x \le 0$;

to nearest: RN(x) is the FP number closest to x. In case of a tie: the one whose integral significand is even (\exists another tie-breaking rule)

Definition (Correctly rounded operation with respect to \circ)

For a given operation $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, an implementation that returns the value $\circ(x * y)$ for all $(x, y) \in \mathbb{F} \times \mathbb{F}$.

The IEEE 754 standard for floating-point arithmetic

IEEE 754-1985: requires correct rounding for +, -, ×, ÷, $\sqrt{\cdot}$ and some conversions. Advantages:

- if the result of an operation is exactly representable, we get it;
- if we just use these correctly rounded operations, deterministic arithmetic
- $\rightarrow\,$ we can thus design algorithms and proofs that use the specifications;
 - accuracy and portability are improved;

IEEE 754-2008: recommends correct rounding for standard mathematical functions

. . .

Introduction Rigo

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Introduction Rigor

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

The Table Maker's Dilemma (TMD) (2/2)

Solving the TMD = knowing the accuracy of the approximation that is required to avoid hard-to-round cases:

- either find the hardest-to-round cases of f: the FP values x such that f(x) is closest to a breakpoint without being a breakpoint;
- $\bullet\,$ or find a lower bound to the nonzero distance between f(x) and a breakpoint.

The Table Maker's Dilemma (TMD) (2/2)

Solving the TMD = knowing the accuracy of the approximation that is required to avoid hard-to-round cases:

- either find the hardest-to-round cases of f: the FP values x such that f(x) is closest to a breakpoint without being a breakpoint;
- or find a lower bound to the nonzero distance between f(x) and a breakpoint.

Example of hardest-to-round (HR) case

The HR case of \exp for decimal64 and rounding-to-nearest is:

 $x = 9.407822313572878 \times 10^{-2}$

 $\exp(x) = 1.098645682066338 \ 5 \ 000000000000000 \ 278\dots$

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

The SLZ algorithm

First step: Turn the TMD into a problem involving integers

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Introduction
0000000000

Outline

1 Introduction and Motivations

- ${f 2}$ Rigorous Polynomial Approximation in ${
 m Coq}$ (CoqApprox)
- 3 Small-Integral-Roots Certificates in Coq (CoqHensel)
 - 4 Conclusion and Perspectives

Introduction	Rigorous Polynomial Approximation in Coo
00000000000	000000000000000000000000000000000000000

Small-Integral-Roots Certificates in Coq 00000000000

Outline

Introduction and Motivations

${f 2}$ Rigorous Polynomial Approximation in ${ m Coq}$ (CoqApprox)

3 Small-Integral-Roots Certificates in COQ (CoqHensel)

4 Conclusion and Perspectives

Rigorous approximation of functions by polynomials (1/2)

• Polynomial approximation

- A common way to represent real functions on machines
- $\bullet\,$ Only solution for platforms where only +, –, \times are available
- Used by most computer algebra systems

Bounds for approximation errors

- Not always available or guaranteed to be accurate in numerical software
- Yet they may be crucial to ensure the reliability of systems
- A key part of the SLZ algorithm

Rigorous approximation of functions by polynomials (2/2)

In the setting of rigorous polynomial approximation (RPA): Approximate the function while fully controlling the error

- May use floating-point arithmetic as support for efficient computation
- Systematically compute interval enclosures instead of mere approximations

Rigorous approximation of functions by polynomials (2/2)

In the setting of rigorous polynomial approximation (RPA): Approximate the function while fully controlling the error

- May use floating-point arithmetic as support for efficient computation
- Systematically compute interval enclosures instead of mere approximations

From rigorous to formally verified polynomial approximation:

- \bullet A computational implementation of Taylor Models in Coq
- Formal proofs that the provided error bounds are not underestimated

Brief overview of Interval Arithmetic (IA)

- Interval = pair of real numbers (or floating-point numbers)
- E.g., $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2, 4] [0, 1] := [2 1, 4 0] = [1, 4], with the enclosure property: $\forall x \in [2, 4], \forall y \in [0, 1], x y \in [1, 4]$.
- Tool for bounding the range of functions
- Dependency problem: for $f(x) = x \cdot (1 x)$ and X = [0, 1], a naive use of IA gives eval(f, X) = [0, 1] while the image of X by f is $[0, \frac{1}{4}]$
- IA is not directly applicable to bound approximation errors e := p f

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Rigorous Polynomial Approximation

Definition

An order-*n* Rigorous Polynomial Approximation (RPA) for a function $f: D \subset \mathbb{R} \to \mathbb{R}$ over I is a pair (P, Δ) where P is a degree-*n* polynomial and Δ is an interval, such that $\forall x \in I$, $f(x) - P(x) \in \Delta$.

Rigorous Polynomial Approximation

Definition

An order-*n* Rigorous Polynomial Approximation (RPA) for a function $f: D \subset \mathbb{R} \to \mathbb{R}$ over I is a pair (P, Δ) where P is a degree-*n* polynomial and Δ is an interval, such that $\forall x \in I$, $f(x) - P(x) \in \Delta$.

Various possible instances of RPAs, depending on the polynomial basis and on the algorithms that are used:

Taylor Models: truncated Taylor series, naturally expressed in Taylor basis Chebyshev Models: Chebyshev interpolants / truncated Chebyshev series

Rigorous Polynomial Approximation

Definition

An order-*n* Rigorous Polynomial Approximation (RPA) for a function $f: D \subset \mathbb{R} \to \mathbb{R}$ over I is a pair (P, Δ) where P is a degree-*n* polynomial and Δ is an interval, such that $\forall x \in I$, $f(x) - P(x) \in \Delta$.

Various possible instances of RPAs, depending on the polynomial basis and on the algorithms that are used:

Taylor Models: truncated Taylor series, naturally expressed in Taylor basis Chebyshev Models: Chebyshev interpolants / truncated Chebyshev series

Taylor Models in CoqApprox

As regards Δ : interval remainder with floating-point bounds;

As regards P: small interval coefficients with floating-point bounds

 \Longrightarrow rounding errors are directly handled by the interval arithmetic

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)

If f is n+1 times derivable on I, then $\forall x \in I$, $\exists \xi$ between x_0 and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i\right)}_{\text{Taylor expansion}} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}}_{\Delta(x,\xi)}.$$

Outline

For *P*: Compute interval enclosures of $\frac{f^{(i)}(x_0)}{i!}$, i = 0, ..., n. For Δ : Compute enclosure of $\Delta(x, \xi)$: Compute enclosure of $\frac{f^{(n+1)}(\xi)}{(n+1)!}$ and deduce $\Delta := \frac{f^{(n+1)}(I)}{(n+1)!}(I - x_0)^{n+1}$

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)

If f is n + 1 times derivable on I, then $\forall x \in I$, $\exists \xi$ between x_0 and x s.t.:

$$f(x) = \underbrace{\left(\sum_{i=0}^{n} \frac{f^{(i)}(x_{0})}{i!} (x - x_{0})^{i}\right)}_{\text{Taylor expansion}} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_{0})^{n+1}}_{\Delta(x,\xi)}.$$

Outline

For *P*: Compute interval enclosures of $\frac{f^{(i)}(x_0)}{i!}$, i = 0, ..., n. For Δ : Compute enclosure of $\Delta(x, \xi)$: Compute enclosure of $\frac{f^{(n+1)}(\xi)}{(n+1)!}$ and deduce $\Delta := \frac{f^{(n+1)}(I)}{(n+1)!}(I - x_0)^{n+1}$

 $\mathsf{Composite functions} \Rightarrow \mathsf{enclosure for} \ \boldsymbol{\Delta} \ \mathsf{can be } \mathsf{largely overestimated}$

Erik Martin-Dorel

Contributions to the Formal Verification of Arithmetic Algorithms

Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

- TM_{add}, TM_{mul}, TM_{comp}, and TM_{div}
- E.g., $\mathsf{TM}_{\mathsf{add}} : ((P_1, \boldsymbol{\Delta_1}), (P_2, \boldsymbol{\Delta_2})) \mapsto (P_1 + P_2, \boldsymbol{\Delta_1} + \boldsymbol{\Delta_2}).$
- A two-fold approach:
 - Apply these operations recursively on the structure of the function
 - Use Taylor-Lagrange remainder for atoms (i.e., for base functions)

Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

- TM_{add}, TM_{mul}, TM_{comp}, and TM_{div}
- E.g., $\mathsf{TM}_{\mathsf{add}} : ((P_1, \boldsymbol{\Delta_1}), (P_2, \boldsymbol{\Delta_2})) \mapsto (P_1 + P_2, \boldsymbol{\Delta_1} + \boldsymbol{\Delta_2}).$
- A two-fold approach:
 - Apply these operations recursively on the structure of the function
 - Use Taylor-Lagrange remainder for atoms (i.e., for base functions)
- \Rightarrow Need to consider a relevant class for base functions, so that:
 - We can easily compute their successive derivatives
 - The interval remainder computed for these atoms is thin enough

D-finite functions (a.k.a. holonomic functions)

Definition

A *D*-finite function is a solution of a homogeneous linear ordinary differential equation with polynomial coefficients: $a_r(x)y^{(r)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$, for given $a_k \in \mathbb{K}[X]$.

Property

The Taylor coefficients of these functions satisfy a *linear recurrence with polynomial coefficients*
D-finite functions (a.k.a. holonomic functions)

Definition

A *D*-finite function is a solution of a homogeneous linear ordinary differential equation with polynomial coefficients: $a_r(x)y^{(r)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$, for given $a_k \in \mathbb{K}[X]$.

Property

The Taylor coefficients of these functions satisfy a *linear recurrence with* polynomial coefficients \rightarrow fast numerical computation of the coefficients

Example (the exponential function)

The Taylor coefficients of exp at x_0 satisfy the recurrence $\forall n \in \mathbb{N}, (n+1)u_{n+1} = u_n$, with $u_0 = \exp(x_0)$ as an initial condition.

ln, sin, arcsin, sinh, arcsinh, arctan, arctanh... are D-finite; tan is not

Formally verified computation: CoqInterval

- Abstract interface for intervals
- Instantiation to intervals with floating-point bounds
- Formal verification with respect to the Reals library

```
for x, y : \mathbb{R}
and X, Y : \mathbb{IR}
x \in X \land y \in Y \implies x + y \in X + Y
x \in X \implies \exp(x) \in \exp(X)
```

Implementation of Taylor Models in Coq

Focus on being generic:

- a Taylor Model is an instance of a Rigorous Polynomial Approximation, i.e., a pair $(P, {\bf \Delta})$
- generic with respect to
 - the type of coefficients of polynomial P,
 - $\bullet\,$ the type of P and the implementation of related operations
 - the type of interval $oldsymbol{\Delta}$

Prove correctness with respect to the standard Reals library

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

A modular implementation of Taylor Models

Comparison with a dedicated tool implemented in C

Sollya [S.Chevillard, M.Joldeș, C.Lauter]

- written in C
- based on the MPFI library
- contains an implementation of univariate Taylor Models
- in an imperative-programming framework
- polynomials as arrays of coefficients

CoqApprox

- \bullet formalized in Coq
- based on the CoqInterval library
- implements Taylor Models using a similar algorithm
- in a functional-programming framework
- polynomials as lists of coefficients (linear access time)

 Coq is around 10 times slower than Sollya! It's very good!

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Some benchmarks for base functions

	Timing		Approximation error			
	Coq	Sollya	Coq	Sollya	Mathematical	
	0.716s	0.093s	1.80×2^{-906}	1.79×2^{-906}	1.79×2^{-906}	
$f = \sin prec = 1000, deg = 70$ I = [127/128, 1]	2.636s	0.088s	1.45×2^{-908}	1.44×2^{-908}	1.44×2^{-908}	
	2.969s	0.420s	1.71×2^{-913}	1.30×2^{-967}	1.07×2^{-1001}	

• with COQ v8.3pl4 using vm_compute,

• and Sollya v3.0 using taylorform(), along with supnorm() for last column.

Some benchmarks for composite functions

	Tim	ing	Approximation error			
	Coq	Sollya	Coq	Sollya	Mathematical	
$f = \exp \times \sin$ prec=400, deg=20 I = [127/128, 1]	0.812s	0.013s	1.36×2^{-222}	1.36×2^{-222}	1.36×2^{-222}	
$f = \exp \times \sin$ prec=400, deg=40 $I = [127/128, 1]$	1.736s	0.040s	1.01×2^{-397}	1.53×2^{-397}	1.06×2^{-402}	
$f = \exp \circ \sin$ prec=400, deg=20 I = [127/128, 1]	7.165s	0.011s	1.56×2^{-192}	1.83×2^{-192}	1.56×2^{-192}	
$f = \exp \circ \sin$ prec=400, deg=40 I = [127/128, 1]	52.687s	0.065s	1.88×2^{-385}	1.38×2^{-384}	1.88×2^{-385}	

- with COQ v8.3pl4 using vm_compute,
- and Sollya v3.0 using taylorform(), along with supnorm() for last column.

Erik Martin-Dorel

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Proving Taylor Models in COQ

Definition

Let $f: \mathbf{I} \to \mathbb{R}$ be a function, x_0 be a small interval around an expansion point x_0 . Let T be a polynomial with interval coefficients a_0, \ldots, a_n and Δ an interval. We say that (T, Δ) is a Taylor Model of f at x_0 on \mathbf{I} when

$$\begin{cases} \boldsymbol{x_0} \subseteq \boldsymbol{I}, \\ 0 \in \boldsymbol{\Delta}, \\ \forall \xi_0 \in \boldsymbol{x_0}, \exists \alpha_0 \in \boldsymbol{a_0}, \dots, \alpha_n \in \boldsymbol{a_n}, \forall x \in \boldsymbol{I}, \ f(x) - \sum_{i=0}^n \alpha_i (x - \xi_0)^i \in \boldsymbol{\Delta}. \end{cases}$$

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Extending the hierarchy to handle proofs

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Extending the hierarchy to handle proofs

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Extending the hierarchy to handle proofs

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq 00000000000

Conclusion 000

Idea of the proof of TMs for the exponential

$$\begin{array}{ll} \operatorname{TM}_{\operatorname{exp}}({\boldsymbol{x}}_{\!\!\!0},{\boldsymbol{I}},n) \coloneqq ({\boldsymbol{a}}_{\!\!\!0} \boxplus \dots \boxplus {\boldsymbol{a}}_{\!\!\!n},{\boldsymbol{\Delta}}) \text{ with} \\ {\boldsymbol{x}}_{\!\!\!0} \subset {\boldsymbol{I}}, \quad {\boldsymbol{a}}_{\!\!\!0} = \exp({\boldsymbol{x}}_{\!\!\!0}), \quad {\boldsymbol{a}}_{n+1} = \frac{{\boldsymbol{a}}_n}{n+1}, \quad {\boldsymbol{\Delta}} = \frac{\exp({\boldsymbol{I}})}{(n+1)!} \times ({\boldsymbol{I}} - {\boldsymbol{x}}_{\!\!\!0})^{n+1}. \end{array}$$

Idea of the proof of TMs for the exponential

$$\begin{split} & \mathrm{TM}_{\exp}(\pmb{x_0},\pmb{I},n) \coloneqq (\pmb{a_0} \eqqcolon \ldots \eqqcolon \pmb{a_n}, \pmb{\Delta}) \text{ with} \\ & \pmb{x_0} \subset \pmb{I}, \quad \pmb{a_0} = \exp(\pmb{x_0}), \quad \pmb{a_{n+1}} = \frac{\pmb{a_n}}{n+1}, \quad \pmb{\Delta} = \frac{\exp(\pmb{I})}{(n+1)!} \times (\pmb{I} - \pmb{x_0})^{n+1}. \end{split}$$

We want to show that $TM_{exp}(\mathbf{x_0}, \mathbf{I}, n)$ is a valid TM for exp:

- $x_0 \subset I$,
- $0 \in \mathbf{\Delta}$,

•
$$\forall \xi_0 \in \boldsymbol{x_0}, \exists \alpha_0 \in \boldsymbol{a_0}, \dots, \alpha_n \in \boldsymbol{a_n},$$

$$\forall x \in I, \ \exp(x) - \sum_{i=0}^{n} \alpha_i \left(x - \xi_0\right)^i \in \mathbf{\Delta}.$$

Idea of the proof of TMs for the exponential

$$\begin{split} & \mathrm{TM}_{\exp}(\pmb{x_0},\pmb{I},n) \coloneqq (\pmb{a_0} \eqqcolon \ldots \eqqcolon \pmb{a_n}, \pmb{\Delta}) \text{ with} \\ & \pmb{x_0} \subset \pmb{I}, \quad \pmb{a_0} = \exp(\pmb{x_0}), \quad \pmb{a_{n+1}} = \frac{\pmb{a_n}}{n+1}, \quad \pmb{\Delta} = \frac{\exp(\pmb{I})}{(n+1)!} \times (\pmb{I} - \pmb{x_0})^{n+1}. \end{split}$$

We want to show that $TM_{exp}(\mathbf{x_0}, \mathbf{I}, n)$ is a valid TM for exp:

- $x_0 \subset I$,
- $0 \in \Delta$,

•
$$\forall \xi_0 \in \boldsymbol{x_0}, \exists \alpha_0 \in \boldsymbol{a_0}, \dots, \alpha_n \in \boldsymbol{a_n},$$

$$\forall x \in I, \ \exp(x) - \sum_{i=0}^{n} \alpha_i \left(x - \xi_0\right)^i \in \mathbf{\Delta}.$$

$$\exists \alpha_i = \frac{\exp(\xi_0)}{i!} \in \boldsymbol{a_i} \text{ such that for all } x \in \boldsymbol{I}, \\ \exp(x) - \sum_{i=0}^n \frac{\exp(\xi_0)}{i!} \left(x - \xi_0\right)^i = \frac{\exp(\xi)}{(n+1)!} \times \left(x - \xi_0\right)^{n+1} \text{ for some } \xi \in \boldsymbol{I}.$$

Generalization to an arbitrary D-finite function f

Difficulties:

- Find minimal assumptions on the function f
 - the derivative is compatible with the recurrence relation
 - ${\ensuremath{\, \bullet }}$ we have a compatible interval evaluator for f
- Provide the Taylor-Lagrange theorem for standard Reals
- \rightsquigarrow Generic proof for first-order and second-order recurrences.

Small-Integral-Roots Certificates in Coq 0000000000

Conclusion 000

Proofs for composite functions

Proof of the algorithm for each algebraic rule

- TM_{add}: straightforward
- TM_{mul}: rely on truncated multiplication of polynomials
- TM_{comp}: rely on TM_{mul}, TM_{add} and TMs for constant functions
- $\mathrm{TM}_{\mathrm{div}}$: it's a TM for $f \times \left(\left(x \mapsto \frac{1}{x} \right) \circ g \right)$

Functions missing from support libraries

Functions missing from the Reals library

- cannot provide a proof for the Taylor Model
- adding them is so far done in a case-by-case manner
- $\rightarrow\,$ find a generic way of adding a new function to Reals
- $\rightarrow\,$ e.g. by using a differential equation or a recurrence relation as definition

Functions missing from support libraries

Functions missing from the Reals library

- cannot provide a proof for the Taylor Model
- adding them is so far done in a case-by-case manner
- $\rightarrow\,$ find a generic way of adding a new function to Reals
- $\rightarrow\,$ e.g. by using a differential equation or a recurrence relation as definition
- Functions missing from CoqInterval
 - cannot provide an initial value for the Taylor Model
 - $\rightarrow\,$ just implement the missing functions in CoqInterval
 - \rightarrow may use other techniques (e.g., fixed point theorems)

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq

Conclusion 000

Outline

Introduction and Motivations

 ${f 2}$ Rigorous Polynomial Approximation in ${
m COQ}$ (CoqApprox)

3 Small-Integral-Roots Certificates in Coq (CoqHensel)

Conclusion and Perspectives

Small-Integral-Roots Certificates in Coq •0000000000 Conclusion 000

Goal: certifying the SLZ algorithm

Small-Integral-Roots Certificates in Coq •0000000000 Conclusion 000

Goal: certifying the SLZ algorithm

Main steps of the formalization

- Define bivariate Hensel lifting as a fixpoint;
- Prove bivariate Hensel's lemma;
- Offine order-2 SIntRootP certificates as an inductive type;
- Oefine order-2 SIntRootP checker as a Boolean predicate;
- Prove its soundness: if a certificate is accepted then it is valid;
- Define ISValP certificates;
- Define ISVaIP checker;
- Prove its soundness;
- Redo steps 3 and 4, 6 and 7 in a generic way to allow one to instantiate the checkers with efficient datatypes;
- Oerive the final correctness proofs, using steps 5 and 8 as well as a series of homomorphisms lemmas rewritings.

Main steps of the formalization

- Define bivariate Hensel lifting as a fixpoint;
- Prove bivariate Hensel's lemma;
- Optime order-2 SIntRootP certificates as an inductive type;
- Define order-2 SIntRootP checker as a Boolean predicate;
- Prove its soundness: if a certificate is accepted then it is valid;
- Define ISValP certificates;
- Define ISVaIP checker;
- Prove its soundness;
- Redo steps 3 and 4, 6 and 7 in a generic way to allow one to instantiate the checkers with efficient datatypes;
- Oerive the final correctness proofs, using steps 5 and 8 as well as a series of homomorphisms lemmas rewritings.

Main steps of the formalization

- Define bivariate Hensel lifting as a fixpoint;
- Prove bivariate Hensel's lemma;
- Optime order-2 SIntRootP certificates as an inductive type;
- Optime order-2 SIntRootP checker as a Boolean predicate;
- Prove its soundness: if a certificate is accepted then it is valid;
- Define ISVaIP certificates;
- Define ISVaIP checker;
- Prove its soundness;
- Redo steps 3 and 4, 6 and 7 in a generic way to allow one to instantiate the checkers with efficient datatypes;
- Oerive the final correctness proofs, using steps 5 and 8 as well as a series of homomorphisms lemmas rewritings.

Small-Integral-Roots Certificates in Coq

Conclusion 000

Bivariate Hensel lifting

Algorithm 1: Bivariate Hensel lifting (quadratic version)

Hensel's lemma: a uniqueness result for modular roots

Let $P_1, P_2 \in \mathbb{Z}[X, Y]$ and let p be a prime satisfying

 $\forall z,t \in \mathbb{Z}, P_1(z,t) \equiv 0 \equiv P_2(z,t) \pmod{p} \Rightarrow \det J_{P_1,P_2}(z,t) \not\equiv 0 \pmod{p}.$

For any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, if we have $P_1(x, y) \equiv 0 \equiv P_2(x, y) \pmod{p^{2^k}}$ for a given $k \in \mathbb{N}$, then for

$$\begin{pmatrix} u_0 \\ v_0 \end{pmatrix} := \begin{pmatrix} x \mod p \\ y \mod p \end{pmatrix},$$

the sequence $(u_i, v_i)_i$ defined by the recurrence relation

$$\forall i \in [0, k[], \begin{pmatrix} u_{i+1} \\ v_{i+1} \end{pmatrix} := \begin{pmatrix} u_i \\ v_i \end{pmatrix} - \left[J_{P_1, P_2}(u_i, v_i) \right]_{p^{2^{i+1}}}^{-1} \begin{pmatrix} P_1(u_i, v_i) \\ P_2(u_i, v_i) \end{pmatrix} \mod p^{2^{i+1}}$$

satisfies:

$$\forall i \in \llbracket 0, k \rrbracket, \ \begin{pmatrix} u_i \\ v_i \end{pmatrix} = \begin{pmatrix} x \mod p^{2^i} \\ y \mod p^{2^i} \end{pmatrix}.$$

Erik Martin-Dorel

Contributions to the Formal Verification of Arithmetic Algorithms

Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq

Conclusion 000

Order-2 SIntRootP certificates

```
Record bivCertif : Set := BivCertif
{ bc_P1 : {bipoly Z}
; bc_P2 : {bipoly Z}
; bc_A : Z
; bc_B : Z
; bc_p : nat
; bc_k : nat
; bc_L : seq (Z * Z * bool)
}.
```

Order-2 SIntRootP certificates checker

Our implemented checker will accept such a certificate $(P_1, P_2, A, B, p, k, L)$ iff

- $p \in \mathbb{P}$
- $p^{2^k} > 2A$ and $p^{2^k} > 2B$
- L contains only simultaneous roots of (P_1, P_2) modulo p^{2^k} , of absolute value $\leq p^{2^k}/2$, and all roots modulo p are present
- for all $(u, v, b) \in L$,
 - $J_{P_1,P_2}(u,v)$ is invertible modulo p
 - the Boolean b is true iff (u,v) is an actual root in $\mathbb Z$

Introduction	Rigorous Polynomial Approximation in Coq	
00000000000	000000000000000000000000000000000000000	

Small-Integral-Roots Certificates in Coq 000000000000 Conclusion 000

ISValP certificates

```
Record cert_ISValP : Set := Cert_ISValP
{ c_P : {poly Z} (* hence Q(X, Y) = P(Y) - X *)
; c M : Z
; c alpha : positive
; c A : Z
; c B : Z
; c_u1 : {bipoly Z} (* in basis M^{lpha-i} 	imes Q^i(X,Y) 	imes Y^j *)
; c_u2 : {bipoly Z} (* in basis M^{lpha-i} 	imes Q^i(X,Y) 	imes Y^j *)
; c p : nat
; c k : nat
; c_L : seq (Z * Z * bool)
}.
```

ISValP certificates checker

```
Definition check ISValP (C : cert ISValP) : bool :=
  let: Cert_ISValP P M alpha A B u1 u2 p k L := C in
  let Q := poly cons P (bipolyC (-1)) in
  let v1 := (bipoly precalc alpha u1 alpha M) \Po Q in
  let v2 := (bipoly_precalc_alpha u2 alpha M) \Po Q in
  let Ma := Zpower pos M alpha in
  let C' := BivCertif v1 v2 A B p k L in
  [\&\& 0 < M.
  bimaphorner Zabs A B v1 < Zabs Ma,
  bimaphorner Zabs A B v2 < Zabs Ma
  & biv check C'].
```

Concepts and libraries involved in the bivariate proofs

- \bullet Signed integers (\mathbb{Z}) with exponentiation and modulus \rightsquigarrow <code>ssrzarith</code>
- $\bullet\,$ Small natural numbers (\mathbb{N}) with primality predicate $\rightsquigarrow\, \tt ssrnat,\, \tt prime\,$
- Rings $\mathbb{Z}/p^m\mathbb{Z}$, modular inversion and divisibility results \rightsquigarrow zmodp, div
- Ring $\mathbb{Z}[X, Y]$ of bivariate polynomials over \mathbb{Z} , with Horner evaluation and Taylor theorem \rightsquigarrow bipoly, based on poly and ssralg
- Need to manipulate a number of summations, typically after the invocations of Taylor theorem \rightsquigarrow <code>bigop</code>
- We also developed some material specific to 2-by-2 matrices, including a modular version of Cramer rule whose correctness proof is

 $\forall A \in \mathcal{M}_2(\mathbb{Z}), \ u \in \mathbb{Z}^2, \ k \in \mathbb{N}, \ \det A \not\equiv 0 \ (\mathsf{mod} \ p) \Rightarrow A \left(A^{-1} u \right) \equiv u \ (\mathsf{mod} \ p^{2^{k+1}})$

A generic implementation for effective certificates checkers

- Most of poly data structures are not computational
- $\bullet\,$ Goal 1: allow to check integral-roots certificates inside ${\rm Coq}\,$
- Goal 2: allow to easily change data structures to speedup computation
- $\rightarrow\,$ Define generic checkers once-and-for-all and instantiate them with the desired integer operations to avoid duplication of code
- \rightarrow Proof: Reuse the reference lemmas proved with SSReflect datatypes and the rewriting lemmas that link both implementations:

```
Module Type CalcRingSig.
Parameters (T : Type) (R : comRingType) (toR : T -> R).
Parameter tadd : T -> T -> T.
Parameter toR_add :
   forall a b, toR (tadd a b) = (toR a + toR b)%R.
```

. . .

An implementation of "Integers Plus Positive Exponent"

- Big ISVaIP certificates \leadsto coefficients scaled with a big power of 2 (e.g., $(2n+1)\times 2^{10629})$
- Develop a specialized instance of computational integers to handle these integers
- \to Consider pairs $(m,e)\in {\tt bigZ}\times {\tt bigN}$ for unevaluated dyadic numbers $m\times 2^e$ with $e\geqslant 0$
- $\rightarrow\,$ Implement a generic module using a subset of the CoqInterval library

Module CalcRingIPPE (Import C : FloatCarrier)
 (Import E : CalcRingExpo C) <: CalcRingIntSig.
Notation typeZ := smantissa_type.
Record T := TZN { TZ : typeZ; TN : typeN }.</pre>

\rightarrow Speedup of 2x

. . .

Benchmarks for the ISValP certificates checker ($f = \exp$)

Inst.	prec	prec'	$\deg(P)$	$\max_i(P_i)$	M	A	В
#1	53	100	2	${\stackrel{\scriptstyle <}{_{\scriptstyle \approx}}} 1.68{\times}2^{237}$	2^{185}	2^{139}	2^{12}
#2	53	100	2	${\stackrel{\scriptstyle <}{_{\scriptstyle \approx}}} 1.22{\times}2^{237}$	2^{185}	2^{139}	2^{12}
#3	53	300	12	${\stackrel{\scriptstyle <}{_{\scriptstyle \approx}}} 1.36{\times}2^{996}$	2^{942}	2^{696}	2^{32}
#4	113	3000	90	${\lessapprox}1.36{\times}2^{13661}$	2^{13547}	2^{10661}	2^{72}

Inst.	α	M^{α}	p	k	#L	time to parse	time to return true
#1	2	2^{370}	5	6	1	0.096s	0.092s
			7	6	2	0.132s	0.112s
#2	2	2^{370}	3	$\overline{7}$	1	0.112s	0.092s
			23	5	0	0.088s	0.172s
#3	4	2^{3768}	5	9	0	0.420s	2.348s
#4	6	2^{81282}	5	14	0	17.4s	3h12m42s

Introduction	
00000000000000	

Outline

- Introduction and Motivations
- $m{2}$ Rigorous Polynomial Approximation in Coq (CoqApprox)
- **3** Small-Integral-Roots Certificates in COQ (CoqHensel)
- 4 Conclusion and Perspectives

Introduction	Rigorous Polynomial Approximation in COQ
00000000000	000000000000000000000000000000000000000

Contributions

- CoqApprox: a modular formalization of Taylor Models in the Coq proof assistant
 - with a generic approach involving D-finite functions
 - taking advantage of the CoqInterval library for interval arithmetic
 - $\rightarrow\,$ ability to compute some formally verified TMs in $\rm Coq$
- CoqHensel: formalization of some effective checkers in COQ for small-integral-roots problems as well as ISValP
 - using Hensel lifting as a certifying algorithm
 - relying on ZArith, BigZ, CoqInterval as well as SSReflect
 - ightarrow ensure that no hard-to-round case for correct rounding has been forgotten

& Augmented computation of $\sqrt{x^2 + y^2}$ & Fast2Sum with double roundings
Introduction	Rigorous Polynomial Approximation in COQ
00000000000	0000000000000000

Perspectives

For CoqApprox:

- add more functions
- combine TMs with some Sums-of-Squares technique
- \bullet implement Chebyshev Models \rightsquigarrow tighter remainders
- investigate ways to ease the definition of RPAs from the ODE
- investigate ways to verify error bounds a posteriori

Por CoqHensel:

- implement a fast algorithm for the multiplication over $\mathbb{Z}[X],$ and/or for the composition over $\mathbb{Z}[X,Y]$
- combine CoqHensel & CoqApprox to get a complete TMD checker
- consider a possible extension of Hensel lifting to rational roots of polynomials
- On formal floating-point:
 - formalize Thm 7.3 (TwoSum with double roundings), Thm 6.4 (2D norms)
 - investigate ways to ease similar formal proofs

Introduction 00000000000 Rigorous Polynomial Approximation in Coq

Small-Integral-Roots Certificates in Coq

Conclusion

End of the Talk

Thank you for your attention!

The TaMaDi project homepage: http://tamadi.gforge.inria.fr/